
h
n

the step sizes h, h
2
, h

4
and h

8
, which decrease by a factor of 2 because according to

Leveque [16] it is a common way to make h small to get highly accurate numerical
solutions that we want to obtain. Additionally, other factors can certainly be used
as well. The second step is that we want to compute the following global truncation
error from [28] at the final time T

eh = |yhn − y(tn)|.

The global truncation error eh with step size h is the difference between the the
numerical solution yhn

  

      
              
             
            
            
           
           

y(t) = e−t
2

.

The exact solution of Equation (1) is
error at the final time T .
lem with a known exact solution which enables us to compute the global truncation 
(1) is chosen to be considered in this study because it is a simple initial value prob- 
A similar first-order linear ODE as Equation (1) can be found in [10]. Equation 

y′(t) = −2ty(t), y(0) = 1, for t ∈ [0, T ]. (1)

problem of a first-order linear ODE is considered
ODE by verifying the convergence rate p. In this study, the following initial value 
Runge-Kutta methods for solving an initial value problem of a first-order linear 
In the convergence study, we measure the order of accuracy of the five explicit 

to compute a numerical solution y of Equation (1) with the step size h. We choose
In the study, we verify the convergence rate p through three steps. The first step is 

(2)

1

and the exact solution y(tn). The third step is that we want

 

         
              
             
            
            
           
            

*

  
  

Convergence study

the convergence study and the efficiency study in MATLAB.
visualize the results in figures. This is done by running the scripts mentioned in 
study and the efficiency study to solve initial value problems numerically and to 
experiment is an efficiency study. MATLAB is also used in the convergence 
The first numerical experiment is a convergence study and the second numerical 
the accuracy and efficiency properties of the five explicit Runge-Kutta methods. 
In this paper we presents two numerical experiments that focus on investigating 
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h = 0.1, h
2
, h

4
and h

T = 1.2 and with the step sizes h = 0.4, h
2
, h

4
and h

8
. We have chosen other step

sizes h for RK8 because RK8 reaches faster to the machine precision error 10−16

which is the smallest relative error we can get by a computer. Heath [10] describes
a relative error as a quotient of the global truncation error and the exact solution.
Furthermore, RK8 reaches faster to the machine precision error because it has a
high accuracy level compared to for instance the forward Euler method. In the
convergence study, we do not want to reach this limit of error because if we reach
this limit, then we will not be able to decrease the errors even more. Therefore, for
RK8 we need to use step sizes h that are larger than h = 0.1, h

2
, h

4
and h

8
just to

make sure that the computed errors using RK8 do not decrease too fast. This is why
the step sizes h = 0.4, h

2
, h

4
and h

8
are used instead. Furthermore, the time interval

h Global truncation er-
rors

ofApproximations
convergence rate

0.1 1.3827×10−2 —
0.05 6.5045×10−3 ≈ 1.0880
0.025 3.1569×10−3 ≈ 1.0430
0.0125 1.5554×10−3 ≈ 1.0210

h Global truncation er-
ror

Approximation of con-
vergence rate

0.1 1.1739×10−3 —
0.05 3.0109×10−4 ≈ 1.9630
0.025 7.6014×10−5 ≈ 1.9860
0.0125 1.9085×10−5 ≈ 1.9940

and RK5 on the time interval t ∈ [0, T ], where T = 1 and with the step sizes
  We solve Equation (1) using the forward Euler method, Heun’s method, RK4 

vergence rate p using [16].
to estimate the convergence rate p by computing three approximations of the con- 

8 . We solve Equation (1) using RK8 on t ∈ [0, T ], where

running Script 8.
shown in Table 1 to Table 5 are also presented in Figure 1 which is obtained by 
were put in a tabular format in LATEX to get Table 1 to Table 5. The results 
Script 6) and RK8 (see Script 7). The data obtained with Script 2 to Script 7 
method (see Script 3), Heun’s method (see Script 4), RK4 (see Script 5), RK5 (see 

  Script 2 is used to define Equation (4.1) which is solved using the forward Euler 
with h = 0.4, then h = 0.4 will not fit in t ∈ [0, 1]. However, it does fit in t ∈ [0, 1.2].
t ∈ [0, 1.2] was used instead of t ∈ [0, 1] because if we start to solve Equation (1)

the forward Euler method for solving y′(t) = −2ty(t), y(0) = 1, for t ∈ [0, 1].
Table 1: Global truncation errors and approximations of the convergence rate of 

Heun’s method for solving y′(t) = −2ty(t), y(0) = 1, for t ∈ [0, 1].
Table 2: Global truncation errors and approximations of the convergence rate of 

2
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h Global truncation er-
rors

ofApproximations
convergence rate

0.1 1.6252×10−6 —
0.05 1.0253×10−7 ≈ 3.9860
0.025 6.4067×10−9 ≈ 4.0000
0.0125 3.9993×10−10 ≈ 4.0020

h Global truncation er-
rors

ofApproximations
convergence rate

0.1 2.8055×10−8 —
0.05 8.3665×10−10 ≈ 5.0670
0.025 2.5427×10−11 ≈ 5.0401
0.0125 7.8292×10−13 ≈ 5.0210

h Global truncation er-
rors

ofApproximations
convergence rate

0.4 1.1530×10−7 —
0.2 5.2249×10−10 ≈ 7.7860
0.1 1.9577×10−12 ≈ 8.0600
0.05 7.3552×10−15 ≈ 8.0560

for solving y′(t) = −2ty(t), y(0) = 1, for t ∈ [0, 1].
Table 3: Global truncation errors and approximations of convergence rate of RK4 

RK5 for solving y′(t) = −2ty(t), y(0) = 1, for t ∈ [0, 1].
Table 4: Global truncation errors and approximations of the convergence rate of 

RK8 for solving y′(t) = −2ty(t), y(0) = 1, for t ∈ [0, 1.2].
Table 5: Global truncation errors and approximations of the convergence rate of 

3

Bulletin For Technology And History Journal

Volume 24, Issue 11, 2024

Issn No : 0391-6715

Page No: 7

pooja
Textbox



10
-2

10
-1

h

10
-15

10
-10

10
-5

10
0

g
lo

b
a

l 
tr

u
n

c
a

ti
o

n
 e

rr
o

rs
 

Forward Euler

Heun

RK4

RK5

RK8

          
                  
             

4

size h on a log-log scale with logarithm of base 10.
(0) = 1, for t ∈ [0, T ] using the five explicit Runge-Kutta methods against the step 
Figure 1: Global truncation errors in the numerical solution of y′(t) = −2ty(t),y 

Table 1 to Table 5 shows global truncation errors and three approximations of the 
convergence rate p of the five explicit Runge-Kutta methods. As the step sizes h in  
Table 1 to Table 5 is halved, the global truncation errors of the five explicit  
Runge-Kutta  methods  also  decrease  by  a  factor  of  approximately  2p.   According to  
Leveque  [16],  if  global  truncation  errors  decrease  by  a  factor  of  approximately 2p,  
then  for  a  forward  Euler  method  which  is  first-order  accurate  with  p =  1  and we  get  
that  the  global  truncation  errors  of  the  forward  Euler  method  decrease  by 
approximately a factor of 2 because 2¹ = 2.  This means that we should expect that the five 
explicit Runge-Kutta methods decrease by a factor of approximately 2p.  We can now check 
if the global truncation errors in Table 1 to Table 5 do decreaseby a factor of approximately 
2p. We check this by investigating how much the first global truncation error in the tables 
decreases.
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1.3827× 10−2

6.5045× 10−3
≈ 2.1260.

3.0109× 10−4
≈ 3.8988.

1.0253× 10−7
≈ 15.851.
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4
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global
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errors
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the

 

forward

 

Euler

 

method

 

are

 

that

 

the

 

global
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errors
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forward
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are
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therefore
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first-order
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8.3665× 10−10
≈ 33.5329.

5.2249× 10−10
≈ 220.6740,

1.1530 × 10−7

   
                 
                 

convergence rate p of RK5.
proportional to h5 (see Figure 1). It is difficult to find in the literature about the 

truncation errors of RK5 are on a line of slope 5 and are equal to O(h5) which is 

has the convergence rate p ≈ 5, therefore it is fifth-order accurate. The global 
The first global truncation error decreased more than what we should expect. RK5 

method. There are smaller global truncation errors in RK5 than the forward Euler
less accurate. The forward Euler method is the least accurate explicit Runge-Kutta 
RK4, and RK5 have greater global truncation errors than RK8, therefore they are 
explicit Runge-Kutta method. While the forward Euler method, Heun’s method, 
solution with the smallest global truncation errors, therefore it is the most accurate 
of all the five explicit Runge-Kutta methods. RK8 converges faster to the exact 
method has the lowest order of accuracy and RK8 has the highest order of accuracy 
solution as RK4, RK5, and RK8 of high-order of accuracy. The forward Euler 
do have a low-order of accuracy, therefore they do not converge as fast to the exact 
Runge-Kutta method gets higher. The forward Euler method and Heun’s method 
faster to the exact solution of Equation (1) as the order of accuracy of the explicit 
base 10. In Figure 1, we can see that an explicit Runge-Kutta method converges 
the final time point we get decimal digits which we can present in the logarithm of 
to Papadopoulos and Simos [19] when we measure accuracy by computing errors at 
base 10. A log-log scale with the logarithm of base 10 is used because according 
of the five explicit Runge-Kutta methods on a log-log scale with the logarithm of 
and the global truncation errors are linear with the slope of the convergence rate p 

  Moreover, Figure 1 shows that the five explicit Runge-Kutta methods converge 
methods is different.
decrease differently because the order of accuracy of the five explicit Runge-Kutta 
we see that the global truncation errors of the five explicit Runge-Kutta methods 
find in the literature about the convergence rate p of RK8. From Table 1 to Table  5 

                   
                

                
             

6

2.8055 × 10−8

first global truncation error decrease by a factor of approximately 34 because
should decrease by a factor of approximately 32 since 25 = 32. However, we get that 

  In Table 4, we can see that for RK5 we expect that the global truncation errors 
section is also obtained in [2].
(3.1). The convergence rate of the forward Euler method and RK4 obtained in this 
the forward Euler method and RK4 using formulas that are similar to the formula 
method and Heun’s method. Ascher [2] also have computed the convergence rate of 
of RK4 decrease faster than for the global truncation errors of the forward Euler 

truncation error decrease by
by a factor of approximately 256 because 28 = 256, but we get that the first global 

  In Table 5, we can see that for RK8, the global truncation errors should decrease 

of slope 8 and it is equal to O(h8) which is proportional to h8. It is difficult to
accurate (see Table 5). In Figure 1, the global truncation errors of RK8 are on a line 

creases less than 256. RK8 has the convergence rate p ≈ 8, therefore it is eighth-order
which is approximately 221. This means that the first global truncation error de-
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~y ′(t) = A~y(t) +~b(t),

~y(0) = ~y0, t ∈ [0, 1].

The system of first-order linear ODEs is defined as the following,
is most efficient for solving a system of first-order linear ODEs.
This study is carried out to find which one of the five explicit Runge-Kutta methods 
methods for solving an initial value problem for a system of first-order linear ODEs. 
In this efficiency study, we investigate the efficiency of the five explicit Runge-Kutta 

  

shown in the lower part of Figure 1.
the slope for RK4, RK5, and RK8 involving smaller global truncation errors are 
greater global truncation errors are shown in the upper part of Figure 1. While 
Figure 1 that the slope for the forward Euler method and Heun’s method involving 
method, Heun’s method, and RK4, therefore RK5 is more accurate. We can see in 

7

Efficiency study

(4)

error over a time interval.

point. If m = ∞, then we have a ∞-norm which is used to compute the maximum 
of the difference between the numerical solution and the exact solution at a time 
between two points. If m = 2, then we have L2 norm which computes the magnitude 
then we have a L1 norm which is used to measure the magnitude of the distance 
contexts. There are m-norms of a vector ~x, where the integer m is m > 0. If m = 1, 
errors and there are different types of vector norms that are useful in different 
which according to Heath [10] is a vector norm. Vector norms are used to measure 

  We measure the global truncation errors at the final time point using L2 norm 
the global truncation errors as the stability limit n increases.
measure the time required for the five explicit Runge-Kutta methods to compute 
limit n until the global truncation errors stop decreasing. In the second step, we also 
methods. We are computing the global truncation errors as we increase the stability 
point in the numerical solution of Equation (4) using the five explicit Runge-Kutta 
using the stability limit n and we compute global truncation errors at the final time 
the five explicit Runge-Kutta methods. In the second step, we solve Equation (4)
methods are stable. In the first step, we want to obtain the stability limit n for 
out the smallest number of time points n such that the five explicit Runge-Kutta 

  This efficiency study is carried out through two steps. The first step is to find 
Equation (4).
how to construct this matrix A can be found in [17]. Script 9 is used to define the 
in space. Constructing this matrix A is not part of this thesis but the theory for 
obtained by the finite difference method for the two-dimensional wave equation  
zero. The matrix A of Equation (4) is already constructed and it is originally 

on t. Also, ~b(t) is a 80802 × 1 zero column vector of 80802 zeros and it has length 

numbers, ~y(t) is a column vector of unknown functions y1(t), · · · , yk(t) dependent 

time point t =1. The matrix A is a 80802×80802 matrix involving 80802×80802 real 
efficiency study, we want to find the numerical solution of Equation (4) at the final 

initial column vector ~y0. Also, ~y0 is a 80802×1 column vector of initial values. In this 
point t =1. This column vector is the exact solution of the first 40401 elements in the 

The exact solution of Equation (4) is a 40401 × 1 column vector at the final time 
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Method Stable Unstable
Forward Euler n ≥ 22000 n ≤ 21800
Heun n ≥ 2100 n ≤ 1980
RK4 n ≥ 435 n ≤ 430
RK5 n ≥ 580 n ≤ 560
RK8 n ≥ 328 n ≤ 300

8

as presented in Table 6. Table 6 shows the stability limits of the five explicit
values of n for which the five explicit Runge-Kutta methods are stable and unstable 
solution of the Equation (4) is a magnitude near 5. As a result, we obtain different 
the numerical solution converges to the exact solution. It is given that the exact 
the five explicit Runge-Kutta methods get started to become stable, which is when 
RK4, RK5, and RK8, respectively. We run the MATLAB codes several times until 
18 to obtain the stability limit n of the forward Euler method, Heun’s method, 
We run the MATLAB codes in Script 10, Script 12, Script 14, Script 16, and Script 
(4) in order to check when the five explicit Runge-Kutta methods become stable. 
Therefore, we solve Equation (4) using different values of n and solve Equation 
stable because we do not know at what n we should start to solve Equation (4). 
In this section, we want to find when the five explicit Runge-Kutta methods are 

 Stability limits

[16].
which we use. A similar global truncation error as Equation (5)can be found in 

‖e~n‖2= ‖~yn − ~y(tn)‖2, (5)

the final time point tn. Moreover, a L2 norm of e~n at the final time point tn is
where ~yn is the numerical solution vector and ~y(tn) is the exact solution vector at 

  e~n = ~yn − ~y(tn),

Assume that we have an global truncation error vector defined by

when n ≤ 560. RK8 is stable when n ≥ 328 and unstable when n ≤ 300.

n ≥ 435, but unstable when n ≤ 430. RK5 is stable when n ≥ 580 but unstable 

method is stable when n ≥ 2100, but unstable when n ≤ 1980. RK4 is stable when 
for which the forward Euler method is unstable for solving Equation (4). Heun’s 

be stable for solving Equation (4). Also, n ≤ 21800 is the number of time points 

for the forward Euler method it takes n ≥ 22000 number of time points in order to 

the forward Euler method is stable but unstable when n ≤ 21800. This means that 

then the explicit Runge-Kutta method is unstable. We can see that when n ≥ 22000 
solution. Also, if the numerical solution does not move closer to the exact solution, 
Runge-Kutta method is stable when the numerical solution move closer to the exact 
Runge-Kutta methods for solving Equation (4). We can determine that an explicit 

A~y(t) + ~b(t), ~y(0) = ~y0, for t ∈ [0, 1].

Table 6: Stability limit n of the five explicit Runge-Kutta methods for ~y ′(t) =
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9

are presented in Figure 2 to Figure 11. We can see from Figure 2 to Figure
Moreover, the results of the global truncation errors and the computational time

visualizes the computational time in seconds.
truncation errors at increasing values of the stability limit n. The second figure 
figures for each explicit Runge-Kutta method. The first figure visualizes the global 
in the tables were visualized using figures in MATLAB. This section presents two 
The data obtained by running these scripts were plotted in tables and then the data 
and Script 19 to compute the global truncation errors and the computational time. 
errors. We run the MATLAB codes in Script 11, Script 13, Script 15, Script 17, 
using Equation (5) and measure the computational time of the global truncation 
truncation errors in the numerical solution of Equation (4) at increasing stability n 
final time point tn using the stability limit n in Table 6. We also compute the global 
five explicit Runge-Kutta methods to compute the global truncation errors at the 
In this efficiency study, we want to find out the computational time required for the 

Time-error efficiency

a stable and unstable numerical method as discussed.
RK4, RK5, and RK8. These results are in agreement with what Heath [10] defines 
Euler method and Heun’s method to converge to the exact solution than for the 
in order to be stable. This means that it takes more time steps for the forward 
forward Euler method and Heun’s method have the highest n number of time points 
from the exact solution and the numerical solution unbound the exact solution. The 
the five explicit Runge-Kutta methods are unstable, the numerical solution diverges 
Kutta methods converge to the exact solution and bound the exact solution. When 
then the numerical solution of Equation (4) obtained by these five explicit Runge- 

  When the forward Euler method, Heun’s method, RK4, RK5, and RK8 is stable, 

points using the forward Euler method.
at increasing stability n number of time 

~b(t), ~y(0) = ~y0, for t ∈ [0, 1] computed

the numerical solution of ~y ′(t) = A~y(t) +
Figure 2: Global truncation errors in

solution of the system of ODEs.
global truncation errors in the numerical 
the forward Euler method to compute 
Figure 3: Time (seconds) required for 

truncation errors decrease asymptotically. This is because as the stability limit n
11 that all the five explicit Runge-Kutta methods are stable because the global 
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10

points using Heun’s method.
at increasing stability n number of time 

~b(t), ~y(0) = ~y0, for t ∈ [0, 1] computed

the numerical solution of ~y ′(t) = A~y(t) +
Figure 4: Global truncation errors in

tion of the system of ODEs.
truncation errors in the numerical solu- 
the Heun’s method to compute global 
Figure 5: Time (seconds) required for 

points using RK4.
at increasing stability n number of time 

~b(t), ~y(0) = ~y0, for t ∈ [0, 1] computed

the numerical solution of ~y ′(t) = A~y(t) +
Figure 6: Global truncation errors in

ODEs.
in the numerical solution of the system of 
RK4 to compute global truncation errors 
Figure 7: Time (seconds) required for 

method and Heun’s method are the least accurate explicit Runge-Kutta methods
accurate than the forward Euler method and Heun’s method. The forward Euler 
the maximum accuracy 10−3. Therefore, we can say that Rk4, RK5, and RK8 is more 
global truncation errors. Both the forward Euler method and Heun’s method have 
and Heun’s method. The forward Euler method and Heun’s method produce greater 
and RK8 produce smaller global truncation errors than the forward Euler method 
also see that the maximum accuracy of RK4, RK5, and RK8 is 10−7. RK4, RK5, 
how stable numerical methods should behave. From Figure 2 to Figure 11 we 
decrease. This asymptotic behavior is in agreement with what Heath [10] describes 
increases, then the global truncation errors in the numerical solution at the final time 
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points using RK5.
at increasing stability n number of time 

~b(t), ~y(0) = ~y0, for t ∈ [0, 1] computed

the numerical solution of ~y ′(t) = A~y(t) +
Figure 8: Global truncation errors in

ODEs.
in the numerical solution of the system of 
RK5 to compute global truncation errors 
Figure 9: Time (seconds) required for 

points using RK8.
at increasing stability n number of time 

~b(t), ~y(0) = ~y0, for t ∈ [0, 1] computed

the numerical solution of ~y ′(t) = A~y(t) +
Figure 10: Global truncation errors in

ODEs.
in the numerical solution of the system of 
RK8 to compute global truncation errors 
Figure 11: Time (seconds) required for 

approximately 1 hour and 8 minutes for the forward Euler method to compute.
limit n of the forward Euler method at the stability limit n = 600000, which takes 
Figure 3. Due to this high computational time, we stopped to increase the stability 
for the forward Euler method to compute the global truncation errors as shown in 

truncation errors decrease. Also, when n ≥ 22000 increases, it takes more time 

Script 11 in MATLAB. Figure 2 shows that when n ≥ 22000 increases the global 
  The results that are shown in Figure 2 and Figure 3 are obtained by running 

to Söderlind [26] it is because they are higher-order explicit Runge-Kutta methods.
RK5, and RK8 give more accurate results in the numerical solution which according 
investigated in this thesis. From this accuracy analysis, we can say that the RK4, 
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more function evaluations to be computed per time step for RK4, RK5, and RK8.
forward Euler method. This efficiency is shown in this section because it took 

            
           
             

           
              
                 
             
               
             
              
            
                
              
             

              
               
           
                 
             
              
              

             
                

            
              
             
                
                
              
                 
                 

               
             
              
              
                
              
             

method is inefficient. In Figure 4.4, Heun’s method in the beginning when we 
method, therefore we can state that both the forward Euler method and Heun’s 
computational time. It also took too high computational time for the forward Euler 
minutes for Heun’s method to compute the global truncation errors which are high 
stability limit n at the stability limit n =300000 because it takes approximately 40 
running Script 13 in MATLAB. For Heun’s method, we stopped to increase the 

  Furthermore, the results that are shown in Figure 4, and Figure 5 are obtained by 

Kutta methods, it is more efficient than low-order Runge-Kutta methods as the
methods such as RK4 require more computational effort than low-order Runge- 

  Moreover, Anidu et al. [1] describe that even though high-order Runge-Kutta 

truncation errors of magnitude 10−7, therefore we did not obtain these results.
tational time for the forward Euler method and Heun’s method to obtain the global 
to run the Script 11 and Script 13 with much smaller step size. It takes high compu- 
magnitude 10−7 using the forward Euler method and Heun’s method, then we have 
RK4, RK5, and RK8. This means that to get the same global truncation errors of 
the magnitude of the forward Euler method and Heun’s method are greater than 
are of the same magnitude 10−3. This means that the global truncation errors of 
smallest global truncation errors of the forward Euler method and Heun’s method 
the same magnitude 10−7 as we see in Figure 7, Figure, 9 and Figure 11. The 
errors because the smallest global truncation errors of RK4, RK5 and RK8 are of 
putational time required for RK4, RK5, and RK8 to compute the global truncation 

global truncation error of magnitude 6.565 × 10−7. We can easily compare the com-
fore it takes less computational time for RK4 than RK5 and RK8 to compute the 
takes approximately 12.5 seconds to compute this global truncation error, there- 
pute this global truncation error than RK8. In Figure 7, we can see that for RK4,it 
computational time is required for RK5. Therefore, RK5 is more efficient to com- 
RK5 it will take approximately 13.8 seconds (see Figure 9), this means that less 
this global truncation error. If we want to obtain this global truncation error using 

nitude 6.565 × 10−7, which takes approximately 21.4 seconds for RK8 to compute
  In Figure 11, we can, for example, take the global truncation error of mag- 

truncation errors of RK8 stop decreasing at the stability limit n = 700.
and Figure 11 are obtained by running the Script 19 in MATLAB. The global 
of RK5 stop decreasing. Furthermore, the results that are shown in Figure 10 
Figure 8, we see that at the stability limit n = 700 the global truncation errors
in Figure 8 and Figure 9 are obtained by running the Script 17 in MATLAB. In 
the global truncation errors of RK4 stop decreasing. Also, the results that are shown 
Script 15 in MATLAB. In Figure 6, we can see that at the stability limit n =1000 

  The results that are shown in Figure 6 and Figure 7 are obtained by running 

error.
a little bit but it will still be close to the previously computed global truncation 
stability limit n increases, then the global truncation errors can decrease or increase 
global truncation errors of Heun’s method start to oscillate, which means that as the 
errors become flat because the stability limit n = 7000 is large. Consequently, the 
limit n = 7000. As a consequence, we see in Figure 4 that the global truncation 
global truncation errors of Heun’s method start to be a constant at the stability 
increase the stability limit n, then the global truncation errors decrease fast. The 
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However, RK4, RK5, and RK8 have shown to be more efficient to solve Equation
(4) than the forward Euler method and Heun’s method, where fewer function
evaluations are required per time step.

13

Conclusion

In  this  paper,  we  have  compared  the  performance  of  the  forward  Euler  method, Heun’s 
method, RK4, RK5, and RK8 in terms of accuracy, stability, and efficiency. We did this through 
the stability analysis, the convergence study, and the efficiency study.  We can conclude from 
the stability analysis that the forward Euler method, Heun’s method, RK4 and RK5 have smaller 
stability regions than the stability re- gion of RK8.  The forward Euler method has the smallest 
stability region and RK8 has the largest stability region.  Therefore, RK8 has shown to have better 
stability property than the forward Euler method, Heun’s method, RK4, and RK5. Therefore,  RK8  
is  the  most  stable  explicit  Runge-Kutta  method  for  solving  Equation
From  the  convergence  study,  RK8  has  shown  to  be  the  most  accurate explicit  
Runge-Kutta  method  for  solving  Equation  (1).   This  is  because  RK8  hasa higher 
convergence rate p, therefore produces more accurate numerical solutionsof Equation (1) 
compared with the forward Euler method, Heun’s method, RK4,and RK5 which are the less 
accurate explicit Runge-Kutta methods.  
The forward Euler method is the least accurate explicit Runge-Kutta method investigated 
in this thesis.  Furthermore, from the efficiency study, we can state that the forward Euler method 
and Heun’s method are inefficient explicit Runge-Kutta methods.  RK5 and RK8 are less efficient 
compared with RK4 because RK4 requires less computational time to compute global truncation 
errors in the numerical solution of Equation (4) than RK5 and RK8.  RK5 and RK8 computed the 
global truncation errors more efficiently than the forward Euler method and Heun’s method.  RK4 
has shown to be the most efficient explicit Runge-Kutta method for solving Equation (4).
Some of the results shown in the stability analysis, the convergence study, and the efficiency 
study did correspond to previous literature.  It was difficult to find previous literature about 
the stability analysis and convergence of RK5 and RK8 as well as the efficiency properties of the 
five explicit Runge-Kutta methods for solving a system of ODEs.  This means that the results 
shown in the stability analysis and the convergence study concerning RK5 and RK8 are new 
results that are derived in this paper.
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