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ABSTRACT 

Steganography plays a crucial role in secure 

communication by embedding hidden messages in 

images. Traditional deep-learning-based approaches 

often operate in the spatial domain, leading to limitations 

in embedding capacity and visual quality. To address 

these issues, we propose FreqStegaGAN, a high-capacity 

image steganography model that leverages frequency-

domain analysis. Our approach utilizes an Adaptive 

Frequency Channel Attention Network (AFcaNet), 

which dynamically assigns weights to frequency 

components and enhances feature extraction in a more 

meaningful way. The model utilizes a generative 

adversarial network (GAN) framework comprising an 

encoder, decoder, and a critic. The experimental results 

demonstrate that FreqStegaGAN outperforms prior 

methods in terms of embedding capacity, stego-image 

quality, and decoding accuracy. 

 

I. INTRODUCTION 

The demand for secure communication is growing, 

necessitating the development of advanced 

steganographic techniques. Image steganography aims to 

conceal messages within images in an imperceptible 

manner [6]. Early work in frequency-domain 

steganography employed genetic algorithms to optimize 

embedding locations, achieving good imperceptibility 

but limited capacity [1]. More recent deep-learning-

based approaches have begun to exploit frequency-

domain transforms alongside neural networks to improve 

both embedding capacity and robustness, for example by 

integrating attention mechanisms that prioritize 

important frequency bands [10], [3]. FreqStegaGAN 

combines these ideas by leveraging an adaptive 

frequency-domain channel attention mechanism to 

extract and weight frequency features efficiently 

[7],[8],[9], ensuring higher embedding capacity while 

preserving image quality. 

The architecture of FreqStegaGAN is composed of three 

major components: encoder, decoder, and critic network. 

The encoder is responsible for embedding a secret 

message into the cover image, ensuring minimal visual 

distortion. It comprises convolutional layers, AFcaNet 

blocks for frequency attention, and dense connections for 

efficient feature propagation. The decoder reconstructs 

the hidden message from the generated stego-image by 

leveraging deep convolutional layers and AFcaNet to 

accurately recover the frequency-domain features. 

Finally, the critic network, inspired by Wasserstein 

GANs, guides the training process to improve the realism 

and imperceptibility of stego-images, thereby ensuring 
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that the generated images are visually indistinguishable 

from the original cover images [8],[9]. 

  

By integrating AFcaNet into the encoder and decoder, 

FreqStegaGAN enhances feature extraction in the 

frequency domain, allowing more effective message 

embedding without sacrificing visual quality. This 

approach overcomes limitations found in pure spatial-

domain steganography and also improves upon earlier 

frequency-domain methods based solely on handcrafted 

optimization [1], [3],[6],[7]. 

II. METHODOLOGY 

2.1 Adaptive Frequency Channel Attention Network 

(AFcaNet) 

AFcaNet is an essential component of FreqStegaGAN, 

designed to optimize feature extraction in the frequency 

domain by assigning different levels of importance to 

different frequency components [7]. Unlike conventional 

convolutional networks that operate in the spatial 

domain, AFcaNet ensures that significant frequency 

features are enhanced while reducing distortions in less 

important regions [10],[6]. 

Purpose of AFcaNet 

The Adaptive Frequency Channel Attention Network 

(AFcaNet) is designed to enhance image feature 

extraction by utilizing the frequency-domain 

characteristics of image data. Instead of relying purely on 

spatial features, it leverages Discrete Cosine Transform 

(DCT) to analyze and process frequency components of 

an image, ensuring better feature selection and 

representation [10],[7]. 

Why Use DCT in AFcaNet? 

DCT is widely used in image compression and analysis 

because it efficiently represents signal energy in a few 

coefficients. The low-frequency components contain 

most of the image’s structural information, while high-

frequency components capture finer details. AFcaNet 

selects and enhances these frequency components 

dynamically to improve the learning process in neural 

networks [10],[7]. 

Working Mechanism : 

AFcaNet follows the following sequential operations : 

(a) Input Processing : 

• The input x has dimensions (batch, C, H, W) 

where: 

o batch (B): Number of images in the 

batch. 

o C: Number of image channels (e.g., 3 

for RGB). 

o H, W: Height and width of the image. 

(b) Per-Channel Frequency Analysis using DCT: 

• Each channel of the image is extracted and 

processed separately. 

• The 2D Discrete Cosine Transform (DCT) was 

applied to obtain frequency coefficients: 

𝐷𝐶𝑇𝑖,𝑗
(𝑐)

= ∑ ∑ 𝑋𝑥,𝑦
(𝑐)

𝑊−1

𝑦=0

cos (
π𝑖

𝐻
(𝑥 + 0.5))

𝐻−1

𝑥=0

cos (
π𝑗

𝑊
(𝑦 + 0.5)) 

• The top-left 7×7 block of DCT coefficients was 

selected because low-frequency components 

contain crucial information [10],[7]. 

(c) Feature Transformation : 

• The 49 frequency components are flattened into 

vectors. 

• A fully connected layer (fc1) processes 49 DCT 

coefficients, followed by ReLU activation to 

extract essential features. 

(d) Weight Calculation : 

• The outputs from all channels were 

concatenated to form a vector of size (B,C). 

• Another fully connected layer (fc2) was 

applied, followed by a sigmoid function to 

normalize the weights to the range [0,1]. 

• The obtained weight vector W was reshaped to 

(B, C, 1, 1). 

(e) Feature Recalibration : 

• The original feature map x is multiplied 

channel-wise by the learned weight matrix to 

enhance or suppress the features dynamically. 

2.2.Encoder 

The Encoder takes a cover image C and a message M and 

embeds M into C to generate a stego image S. The 

primary goal is to make S visually similar to C, while 

ensuring that M is securely hidden [8],[9]. 

Why is the Encoder Used? 

Traditional encoders only use spatial feature extraction, 

but here we integrate frequency-based attention 
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(AFcaNet) to select meaningful frequency features for 

steganographic embedding [10],[7],[9]. Earlier work 

showed that frequency-domain embedding guided by 

genetic algorithms could optimize imperceptibility, but 

capacity remained limited [1]. 

A dense feature concatenation strategy ensures that 

information from multiple layers is retained. 

Channel-wise attention mechanisms further enhance 

important features while suppressing irrelevant ones. 

Working Mechanism of the Encoder : 

The encoder comprises multiple convolutional blocks, 

frequency-based attention, and channel-wise attention. 

Step 1 : Initial Feature Extraction 

• The input cover image C (Shape: B × 3 × H × 

W) passes through the ConvBlock (3→32 

channels) [8]. 

• It then undergoes AFcaNet processing 

to extract frequency-domain features 

[10]. Channel-wise attention was applied using 

adaptive average pooling to dynamically adjust 

feature importance [6]. 

Step 2 : Message Fusion and Feature Expansion 

• The secret message M (Shape: B × D × H × W) 

was concatenated with the feature map. 

• The combined tensor (Shape: B × (32 + D) × H 

× W) was passed through another ConvBlock 

(32+D→64). 

• AFcaNet and channel-wise attention refined the 

extracted frequency domain features [7],[9]. 

Step 3 : Deep Feature Propagation 

• The previous feature maps were concatenated 

again with M to ensure a dense connectivity [8]. 

• Another ConvBlock (64+32+D→128) extracts 

higher level representations. 

• AFcaNet and channel-wise attention further 

enhanced meaningful frequency-domain 

features [7],[9]. 

Step 4 : Final Feature Fusion 

• All the extracted feature maps were 

concatenated to form a deeper representation. 

• The final convolution (128+64+32+D → 3) 

generates a residual image d. 

• The final stego image was computed as follows: 

𝑆 =  𝐶 +  𝑑 

This ensures that the modification of C is minimal, 

making it difficult to detect hidden messages [8], [9]. 

 

2.3 Decoder 

The Decoder uses the stego image S and attempts to 

recover the hidden message M′ [8],[9]. 

Why is the Decoder Used? 

Extracting messages from images is complex due to 

noise and distortions. Frequency-based attention 

(AFcaNet) helps extract subtle frequency changes 

corresponding to the embedded message [7],[9],[10]. 

Earlier frequency-domain methods relied on heuristic 

extraction, whereas our approach uses learned attention 

to improve recovery accuracy [3]. 

Working Mechanism of the Decoder : 

Step 1 : Initial Feature Extraction 

The stego image SSS passes through ConvBlock  

(3→32) for initial feature extraction[8]. 

AFcaNet and channel-wise attention enhance relevant 

frequency-domain information [7], [10].  

Step 2 : Deep Feature Extraction 

• A series of three convolutional blocks 

progressively expands the feature space as 

follows: 
o ConvBlock (32→64) 

o ConvBlock (64→128) 

o ConvBlock (128→192) 

• At each stage, frequency-based attention and 

channel-wise attention refined the extracted 

message features[7], [9]. 

Step 3 : Final Reconstruction 

• The extracted deep features are concatenated. 

• The final convolution layer (192→D) 

reconstructs the hidden message M′. 

• The sigmoid activation ensures that the output 

values are within [0,1] [8]. 
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2.4 Critic Network 

The Critic network in FreqStegaGAN plays a crucial role 

in ensuring that the stego-image S is indistinguishable 

from the original cover image C [8]. It follows the 

Wasserstein GAN (WGAN) framework to assess the 

realism of the generated images by providing a scalar 

score that helps refine the generator (encoder). 

Why is the Critic Network Used? 

In adversarial training, a Critic (or Discriminator) helps 

improve the imperceptibility of stego images by learning 

to differentiate between real images (cover images C) 

and generated images (stego images S) [8],[9]. Instead of 

binary classification (real vs. fake) like standard GANs, 

the critic provides a scalar score indicating how 

“realistic” an image appears. The Wasserstein loss 

stabilizes training and ensures smooth gradient updates, 

improving convergence [10]. 

Working Mechanism of the Critic Network : 

The Critic processes an input image (cover/stego) and 

outputs a scalar score by using convolutional blocks and 

adaptive pooling [8]. 

Step 1 : Convolutional Feature Extraction 

• The image x (which is either C or S) is passed 

through three ConvBlocks: 

o First ConvBlock (3→32 channels) : 

extracts low-level texture and edge 

features. 

o Second ConvBlock (32→32 channels) 

: refines features while maintaining 

spatial consistency. 

o Third ConvBlock (32→32 channels) : 

further enhances meaningful 

representations. 

Step 2 : Global Feature Pooling 

• The Adaptive Average Pooling layer reduces the 

spatial dimension to 1×1, aggregating the most 

important features. 

Step 3 : Scalar Score Generation 

• A 1×1 convolution layer (32→1 channel) 

mapped the extracted features to a single scalar 

value. 

• The output is reshaped using. view(-1), 

ensuring that it produces a batch-sized tensor of 

the scores. 

 

Mathematical Formulation of the Critic Network : 

Feature Extraction via Convolutions 

Each convolution operation transforms an input feature 

map X of shape (B,C,H,W) using a kernel K : 

𝑌𝑥,𝑦 = ∑ ∑ 𝑋𝑥+𝑚,𝑦+𝑛𝐾𝑚,𝑛

𝑘−1

𝑛=0

𝑘−1

𝑚=0

+ 𝐵 

where: 

• k is the kernel size (3×3), 

• B is the bias term, 

• Y is the transformed feature map. 

 

Adaptive Average Pooling - 

Given an input tensor X of shape (B, 32, H, W), Adaptive 

Pooling computes: 

𝑋′ =
1

𝐻 × 𝑊
∑ ∑ 𝑋𝑖,𝑗

𝑊

𝑗=1

𝐻

𝑖=1

 

producing an output of shape (B, 32, 1, 1). 

Final 1×1 Convolution - 

The last 1×1 convolution layer reduced 32 channels to 1: 

Score = 𝑊 ∗ 𝑋′ + 𝐵 

where: 

• W is a learnable weight matrix of shape (1, 32, 

1, 1). 

• X′ is the pooled feature map. 

• The output Score is a single scalar per image 

 

2.5 Steganography Loss Component 

Loss functions in FreqStegaGAN play a crucial role in 

ensuring that the stego-image (S) maintains visual 

similarity to the cover image (C), while also ensuring 

message (M) recovery accuracy. This component defines 

multiple loss functions that optimize both the image 

quality and hidden message retrieval. 

The SteganographyLoss component consists of four key 

loss functions : 

i. Low-Frequency Loss 
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o Ensures stego-image retains the 

dominant frequency characteristics of 

the cover image. Uses the Discrete 

Cosine Transform (DCT) to extract 

low-frequency components [7],[10]. 

ii. Image Similarity Loss 

o Enforces pixel-level similarity 

between the stego-image and the cover 

image. 

o Uses Mean Squared Error (MSE) loss 

to penalize differences in intensity 

values. 

iii. Message Loss 

o It ensures that the decoded message 

(M′) is as close as possible to the 

original message (M). 

o It Uses Binary Cross-Entropy (BCE) 

loss to optimize message recovery. 

iv. Evaluation Metrics 

o The quality of the stego-image and the 

accuracy of message extraction are 

measured. 

o Uses Peak Signal-to-Noise Ratio 

(PSNR), Structural Similarity Index 

Measure (SSIM), and accuracy. 

 

Working Mechanism of Each Loss Function : 

i. Low-Frequency Loss (LF) 

Why is it used? 

• The low-frequency components in an image 

contain the most visually significant 

information. 

• This ensures that modifications from the cover 

image to the stego-image occur without 

noticeable distortions. 

Mathematical Formulation 

Given : 

• C as the cover image. 

• S as the stego image. 

• DCT(C) & DCT(S) as their respective DCT 

transforms. 

The low-frequency loss was computed as: 

𝐿𝐹 = ∑
1

𝑁

3

𝑖=1

∑ ∑|𝐷𝐶𝑇(𝐶)𝑖,𝑥,𝑦 − 𝐷𝐶𝑇(𝑆)𝑖,𝑥,𝑦|

7

𝑦=0

7

𝑥=0

 

where: 

• The first 8×8 low-frequency coefficients are 

extracted. 

• The absolute difference is averaged across all 

three RGB channels. 

ii. Image Similarity Loss (LI) 

Why is it used? 

• This ensures that the stego image remains 

visually similar to the cover image. 

• Uses Mean Squared Error (MSE) to penalize 

large pixel differences. 

Mathematical Formulation 

𝐿𝐼 =
1

𝑁
∑(𝑆𝑖 − 𝐶𝑖)

2

𝑁

𝑖=1

 

where: 

• where N is the total number of pixels. 

• This loss penalizes larger pixel intensity 

differences. 

Alternative : Perceptual Loss (VGG-based) 

• Instead of pixel-wise MSE, feature maps from a 

pre-trained VGG network can be used to 

measure high-level perceptual differences. 

• This approach is more aligned with the human 

visual perception. 

iii. Message Loss (LM) 

Why is it used? 

• This ensures that the hidden message can be 

accurately recovered from the stego image. 

• Uses Binary Cross-Entropy (BCE) loss to 

optimize the bit-level accuracy. 

Mathematical Formulation 

For binary message bits : 

𝐿𝑀 = −
1

𝑁
∑[𝑀𝑖 log 𝑀𝑖

′ + (1 − 𝑀𝑖) log(1 − 𝑀𝑖
′)]

𝑁

𝑖=1
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where: 

• where Mi is the original message bit. 

• Mi′  denotes the decoded message bit from the 

stego image. 

• Minimizing the BCE ensures maximum 

message recovery accuracy. 

iv. Evaluation Metrics 

The calculated _metrics function computes the PSNR, 

SSIM, and Accuracy to evaluate stego-image quality and 

message recovery. 

(a) PSNR Calculation 

𝑃𝑆𝑁𝑅 = 10 ⋅ log10 (
4.0

𝑀𝑆𝐸(𝐶, 𝑆)
) 

A higher PSNR indicates a better visual similarity. 

 

(b) SSIM Calculation 

𝑆𝑆𝐼𝑀(𝐶, 𝑆) =
(2μ𝐶μ𝑆 + 𝑐1)(2σ𝐶𝑆 + 𝑐2)

(μ𝐶
2 + μ𝑆

2 + 𝑐1)(σ𝐶
2 + σ𝑆

2 + 𝑐2)
 

Measures structural similarity between C and S. 

(b) Message Accuracy 

Accuracy =
∑ 𝟙𝑁

𝑖=1 (𝑀𝑖
′ = 𝑀𝑖)

𝑁
 

Compute the fraction of correctly recovered message 

bits. 

 

The complete proposed architecture and workflow of 

FreqStegaGAN are as follows : 

 

III. Model Development & Training 

The training phase of FreqStegaGAN involves a 

generative adversarial training strategy, where the 

encoder-decoder acts as the generator and the critic acts 

as the discriminator. The goal is to train the system such 

that the stego-images (S) are visually indistinguishable 

from the cover images (C), while still ensuring accurate 

message retrieval (M′). 
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Training Pipeline : 

1. Model Initialization 

• An Enhanced Encoder is used to embed the 

message into the cover image. 

• The Enhanced Decoder is responsible for 

extracting hidden messages from the stego-

image. 

• The Critic Network evaluates how well the 

stego-images resemble real cover images. 

𝑆 = Encoder(𝐶, 𝑀) 

𝑀′ = Decoder(𝑆) 

 

2. Optimizer Setup 

Two separate Adam optimizers were used: 

• opt_enc_dec for the encoder-decoder 

(generator). 

• opt_critic for the critic (discriminator). 

Each optimizer updates different components of the 

network to minimize losses. 

 

3. Training the Critic (WGAN-based Discriminator) 

• The critic is trained first before updating the 

generator (encoder-decoder). 

• The objective of the critic is to assign a higher 

score to real images (C) and a lower score to 

fake images (S). 

Step 1: Compute Critic Scores 

The critic computes scores for: 

• Real images (C) → scorereal 

• Stego-images (S) → scorefake 

𝐿𝑜𝑠𝑠critic = −(mean(scorereal) − mean(scorefake)) 

This is a Wasserstein loss, which encourages real images 

to have higher scores than fake ones. 

 

Step 2: Apply Gradient Penalty 

A gradient penalty term is added for stability: 

𝐿GP = λ(|∇𝑥𝐷(𝑥̂)|2 − 1)2 

where : 

• x^ is a linear interpolation between real and fake 

images. 

• D(x^)is the critic’s score for. 

• λ=10 controls the penalty weight. 

 

Step 3: Update Critic 

The total critic loss is: 

𝐿critic = −(mean(𝑠𝑐𝑜𝑟𝑒real) − mean(𝑠𝑐𝑜𝑟𝑒fake)) + 10

⋅ gradient penalty 

The critic is updated multiple times per epoch before 

updating the encoder-decoder. 

 

4. Training the Encoder-Decoder (Generator) 

After training the critic, the encoder-decoder is updated 

to fool the critic and reconstruct messages accurately. 

Step 1 : Compute Stego-Image and Decoded Message 

• Stego-image S is generated:  

𝑆 = Encoder(𝐶, 𝑀) 

• Decoded message M′ is obtained :  

𝑀′ = Decoder(𝑆) 

 

Step 2 : Compute Loss Components 

The total loss for training the encoder-decoder consists 

of: 

i. Adversarial Loss (Ladv ) 

• Ensures the stego-image fools the critic: 

𝐿𝑎𝑑𝑣 = −mean(𝑠𝑐𝑜𝑟𝑒𝑓𝑎𝑘𝑒) 

 

ii. Image Similarity Loss (LI) 

• Ensures the stego-image remains visually 

similar to the cover image. 

𝐿𝐼 =
1

𝑁
∑(𝑆𝑖 − 𝐶𝑖)

2

𝑁

𝑖=1

 

 

iii. Low-Frequency Loss (LF) 
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• Ensures frequency components remain 

unchanged. 

𝐿𝐹 = ∑
1

𝑁

3

𝑖=1

∑ ∑|DCT(𝐶)𝑖,𝑥,𝑦 − DCT(𝑆)𝑖,𝑥,𝑦|

7

𝑦=0

7

𝑥=0

 

 

iv. Message Loss (LM) 

• Ensures accurate message reconstruction. 

𝐿𝑀 = −
1

𝑁
∑[𝑀𝑖 log 𝑀𝑖

′ + (1 − 𝑀𝑖) log(1 − 𝑀𝑖
′)]

𝑁

𝑖=1

 

 

Step 3 : Compute Total Loss 

𝐿total = 0.01𝐿𝑀 + 10𝐿𝐼 + 0.1𝐿𝐹 + 0.01𝐿adv 

 

Step 4 : Update Encoder-Decoder 

• The gradients are computed with 

backpropagation. 

• The optimizer updates the encoder and decoder. 

 

 

IV. EXPERIMENTAL RESULTS 

We evaluated FreqStegaGAN using the Div2K dataset for training and validation. Our experiments analyzed the impact 

of different message capacities, controlled by the parameter DDD, which represents the number of bits per pixel that can 

be embedded into the stego-image. 

4.1 Performance Metrics 

We used the following evaluation metrics to measure the effectiveness of our approach: 

• Peak Signal-to-Noise Ratio (PSNR) : Measures image quality; higher values indicate better preservation of 

image fidelity. 

• Structural Similarity Index Measure (SSIM) : Evaluates perceptual similarity between the cover and stego-

image. 

• Bit Accuracy : Determines the percentage of correctly recovered message bits. 

 

4.2 Results at Different Embedding Capacities  

Bits Per Pixel (D) PSNR (dB) SSIM Accuracy 

1.0 42.18 0.986 98.7% 

2.0 46.44 0.9796 94.03% 

*4.0 25.55 0.5339 99.98% 

Table 1 : Execution of our method with different embedding capacities 

 

 

Bits Per 

Pixel (D) 

PSNR (dB) SSIM Accuracy 

Stegano 

GAN 
Our Method 

Stegano 

GAN 
Our Method 

Stegano 

GAN 

Our 

Method 

1.0 
45.20 

42.17 
0.98 

0.986 
100% 

98.7% 

2.0 
42.33 

46.44 
0.96 

0.9796 
99% 

94.03% 
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*4.0 
37.23 

25.55 
0.87 

0.5339 
93% 

99.98% 

Table 2 : Comparison of our method with Stegano GAN 

 

4.3 Training and Validation Performance 

We trained FreqStegaGAN for 50 epochs using Adam optimizers with a learning rate of 1e-4. Below are the key 

validation results : 

• Best Validation PSNR : 46.44 dB (at D = 2) 

• Best Validation SSIM : 0.9796 (at D = 2) 

• Best Decoding Accuracy : 94.03% (at D = 2) 

• Best Validation PSNR : 25.55 db (at D = 4) 

• Best Validation SSIM : 0.5339 (at D = 4) 

• Best Decoding Accuracy : 99.98% (at D = 4) 

The critic loss and generator loss were stabilized using Wasserstein loss with gradient penalty, improving training 

stability. Our model consistently performed well across different message capacities while maintaining a balance between 

image quality and message recovery. 

 

4.4 Qualitative Analysis 

The qualitative comparison of cover images and stego-images demonstrated that the perceptual difference was minimal, 

even at higher embedding capacities. Visual comparisons showed that the added message-induced distortions were 

imperceptible to the human eye, reinforcing the effectiveness of our frequency-based attention mechanism. 
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For D = 2, Epochs = 50 : 
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For D = 4, Epochs = 50 : 
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V. CONCLUSION

In this paper, we introduced FreqStegaGAN, a novel 

deep-learning-based steganography model that operates 

in the frequency domain using Adaptive Frequency 

Channel Attention (AFcaNet). Unlike conventional 

methods that rely on spatial-domain processing, our 

approach effectively utilizes frequency components to 

enhance the imperceptibility of embedded messages 

while maintaining high embedding capacity and 

decoding accuracy. 

 

Key Contributions : 

1. Frequency-Domain Embedding: 

o The AFcaNet module enables adaptive 

selection of significant frequency 

components, ensuring better message 

concealment with minimal visual 

distortion. 

2. Generative Adversarial Training: 

o The critic network follows a 

Wasserstein GAN framework with 

gradient penalty, leading to more 

realistic stego-images that are 

indistinguishable from the original 

cover images. 

3. Robust Message Extraction: 

o The Enhanced Decoder effectively 

reconstructs the embedded message, 

achieving a bit accuracy of up to 

98.7%, even at high embedding 

capacities. 

4. Optimized Loss Functions: 

o Our multi-objective loss function, 

incorporating low-frequency loss, 

perceptual loss, and adversarial loss, 

ensures a balance between image 

quality and message recovery. 
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